Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.265
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Methods Mol Biol ; 2676: 87-100, 2023.
Article in English | MEDLINE | ID: mdl-37277626

ABSTRACT

Natural proteins are normally made by 20 canonical amino acids. Genetic code expansion (GCE) enables incorporation of diverse chemically synthesized noncanonical amino acids (ncAAs) by orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs using nonsense codons, which could significantly expand new functionalities of proteins in both scientific and biomedical applications. Here, by hijacking the cysteine biosynthetic enzymes, we describe a method combining amino acid biosynthesis and GCE to introduce around 50 structurally novel ncAAs into proteins by supplementation of commercially available aromatic thiol precursors, thus eliminating the need to chemically synthesize these ncAAs. A screening method is also provided for improving the incorporation efficiency of a particular ncAA. Furthermore, we demonstrate bioorthogonal groups, such as azide and ketone, that are compatible with our system and can be easily introduced into protein for subsequent site-specific labeling.


Subject(s)
Amino Acids , Amino Acyl-tRNA Synthetases , Amino Acids/chemistry , Proteins/metabolism , Genetic Code , Amino Acyl-tRNA Synthetases/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Protein Biosynthesis
2.
Sci Rep ; 13(1): 8734, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253812

ABSTRACT

Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-ß, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.


Subject(s)
Breast Neoplasms , Glycyrrhiza , Female , Humans , Breast Neoplasms/prevention & control , Breast Neoplasms/metabolism , Aromatase/metabolism , Aromatase Inhibitors/pharmacology , Estrogens/metabolism , Glycyrrhiza/chemistry , Estrogen Receptor beta/metabolism , Protein Biosynthesis
3.
Biotechnol Prog ; 39(3): e3332, 2023.
Article in English | MEDLINE | ID: mdl-36799109

ABSTRACT

Cell-free protein synthesis (CFPS) is a versatile biotechnology platform enabling a broad range of applications including clinical diagnostics, large-scale production of officinal therapeutics, small-scale on-demand production of personal magistral therapeutics, and exploratory research. The shelf stability and scalability of CFPS systems also have the potential to overcome cost and infrastructure challenges for distributing and using essential medical tests at home in both high- and low-income countries. However, CFPS systems are often more time-consuming and expensive to prepare than traditional in vivo systems, limiting their broader use. Much work has been done to lower CFPS costs by optimizing cell extract preparation, small molecule reagent recipes, and DNA template preparation. In order to further reduce reagent cost and preparation time, this work presents a CFPS system that does not require separately purified DNA template. Instead, a DNA plasmid encoding the recombinant protein is transformed into the cells used to make the extract, and the extract preparation process is modified to allow enough DNA to withstand homogenization-induced shearing. The finished extract contains sufficient levels of intact DNA plasmid for the CFPS system to operate. For a 10 mL scale CFPS system expressing recombinant sfGFP protein for a biosensor, this new system reduces reagent cost by more than half. This system is applied to a proof-of-concept glutamine sensor compatible with smartphone quantification to demonstrate its viability for further cost reduction and use in low-resource settings.


Subject(s)
Biotechnology , Protein Biosynthesis , Fermentation , Cell Extracts , Recombinant Proteins/genetics , Cell-Free System/metabolism , Plant Extracts/metabolism
4.
J Virol ; 97(2): e0198722, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36728416

ABSTRACT

Hepatitis A virus (HAV) infection often causes acute hepatitis, which results in a case fatality rate of 0.2% and fulminant hepatitis in 0.5% of cases. However, no specific potent anti-HAV drug is available on the market to date. In the present study, we focused on inhibition of HAV internal ribosomal entry site (IRES)-mediated translation and investigated novel therapeutic drugs through drug repurposing by screening for inhibitors of HAV IRES-mediated translation and cell viability using a reporter assay and cell viability assay, respectively. The initial screening of 1,158 drugs resulted in 77 candidate drugs. Among them, nicotinamide significantly inhibited HAV HA11-1299 genotype IIIA replication in Huh7 cells. This promising drug also inhibited HAV HM175 genotype IB subgenomic replicon and HAV HA11-1299 genotype IIIA replication in a dose-dependent manner. In the present study, we found that nicotinamide inhibited the activation of activator protein 1 (AP-1) and that knockdown of c-Jun, which is one of the components of AP-1, inhibited HAV HM175 genotype IB IRES-mediated translation and HAV HA11-1299 genotype IIIA and HAV HM175 genotype IB replication. Taken together, the results showed that nicotinamide inhibited c-Jun, resulting in the suppression of HAV IRES-mediated translation and HAV replication, and therefore, it could be useful for the treatment of HAV infection. IMPORTANCE Drug screening methods targeting HAV IRES-mediated translation with reporter assays are attractive and useful for drug repurposing. Nicotinamide (vitamin B3, niacin) has been shown to effectively inhibit HAV replication. Transcription complex activator protein 1 (AP-1) plays an important role in the transcriptional regulation of cellular immunity or viral replication. The results of this study provide evidence that AP-1 is involved in HAV replication and plays a role in the HAV life cycle. In addition, nicotinamide was shown to suppress HAV replication partly by inhibiting AP-1 activity and HAV IRES-mediated translation. Nicotinamide may be useful for the control of acute HAV infection by inhibiting cellular AP-1 activity during HAV infection processes.


Subject(s)
Hepatitis A virus , Niacinamide , Proto-Oncogene Proteins c-jun , Humans , Drug Evaluation, Preclinical , Hepatitis A , Hepatitis A virus/drug effects , Hepatitis A virus/physiology , Niacinamide/pharmacology , Protein Biosynthesis , Transcription Factor AP-1/genetics , Virus Replication/drug effects , Proto-Oncogene Proteins c-jun/genetics
5.
ACS Synth Biol ; 12(2): 405-418, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36700560

ABSTRACT

Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.


Subject(s)
Protein Biosynthesis , Proteomics , Escherichia coli/genetics , Escherichia coli/metabolism , Cell-Free System/metabolism , Plant Extracts/metabolism
6.
J Appl Biomed ; 21(1): 23-35, 2023 04.
Article in English | MEDLINE | ID: mdl-36708715

ABSTRACT

Increasing data has confirmed the potential anticancer properties of Dendrobium, a traditional Chinese herb. However, most anticancer compositions from the plant of Dendrobium were usually extracted by high polar solvent, while weak polar compositions with excellent anticancer activity remained largely unexplored. In this study, the differences between ether extract and ethanol extract of Dendrobium nobile Lindl. on chemical components and anticancer activities were investigated, as well as the anticancer mechanisms among different extracts. The results demonstrated that the ether extract exhibited a stronger anticancer effect than ethanol extract, and its anticancer effect was mainly due to weak polar compounds rather than polysaccharides and alkaloids. Quantitative proteomics suggested that the ether extract significantly stimulated the over-expression of immature proteins, the endoplasmic reticulum stress and unfolded protein response were subsequently induced, the intracellular reactive oxygen species level was seriously elevated, and oxidative stress occurred in the meanwhile. Eventually, autophagy and apoptosis were activated to cause cell death. Our findings demonstrate that the ether extract of D. nobile is a potential candidate for anticancer drug development, and that future research on anticancer drugs derived from medicinal plants should also concentrate on weak polar compounds.


Subject(s)
Antineoplastic Agents , Dendrobium , Ether , Dendrobium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Autophagy , Protein Biosynthesis , Antineoplastic Agents/pharmacology , Ethanol
7.
J Anim Sci ; 100(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35366314

ABSTRACT

Neonatal piglets often suffer low birth weights and poor growth performance accompanied by the disruption of protein metabolism, when intrauterine growth restriction (IUGR) takes place during pregnancy, leading to a higher mortality and bigger economic loss than expected. Leucine has been proposed to function as a nutritional signal-regulating protein synthesis in numerous studies. The aim of this study was to determine the effect of dietary leucine supplementation on the blood parameters and hepatic protein metabolism in IUGR piglets. Weaned piglets were assigned to one of four treatments in a 2 × 2 factorial arrangement: 1) piglets fed a basal diet with normal birth weight, 2) piglets fed a basal diet plus 0.35% l-leucine with normal birth weight, 3) IUGR piglets fed a basal diet with low birth weight, and 4) IUGR piglets fed a basal diet plus 0.35% l-leucine with low birth weight. The results showed that IUGR decreased serum aspartate aminotransferase and alkaline phosphatase activities and increased serum cortisol and prostaglandin E2 levels at 35 d of age (P < 0.05), suggesting the occurrence of liver dysfunction and stress response. Leucine supplementation increased serum alkaline phosphatase activity and decreased serum cortisol levels at 35 d of age (P < 0.05). IUGR decreased the lysozyme activity and complement 3 level in serum (P < 0.05), which were prevented by dietary leucine supplementation. IUGR piglets showed increased hepatic DNA contents while showing a reduced RNA/DNA ratio (P < 0.05). Piglets supplied with leucine had decreased RNA/DNA ratio in the liver (P < 0.05). Leucine supplementation stimulated hepatic protein anabolism through upregulating protein synthesis-related genes expression and activating the phosphorylation of mammalian/mechanistic target of rapamycin (mTOR) (P < 0.05). Moreover, IUGR inhibited the mRNA expression of hepatic protein degradation-related genes, indicating a compensatory mechanism for the metabolic response. Dietary leucine supplementation attenuated the suppression of the protein catabolism induced by IUGR in the liver. These results demonstrate that dietary leucine supplementation could alter the blood parameters and alleviated the disrupted protein metabolism induced by IUGR via enhanced mTOR phosphorylation to promote protein synthesis in weaned piglets.


Intrauterine growth restriction (IUGR) produces a notable disturbance of protein metabolism in piglets, leading to lower birth weights and economic loss. Leucine supplementation positively regulates protein metabolism in animals and has the potential to recover the impaired balance between protein synthesis and degradation. Our study showed that leucine supplementation alleviated the abnormal changes in blood parameters and stimulated protein synthesis through the mammalian/mechanistic target of rapamycin signal pathway in the liver. Leucine supplementation attenuated the suppression of protein degradation induced by IUGR, which might be involved in a hepatic compensatory mechanism contributing to health status.


Subject(s)
Dietary Supplements , Fetal Growth Retardation , Alkaline Phosphatase/metabolism , Animals , Animals, Newborn , Birth Weight , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/veterinary , Hydrocortisone/metabolism , Leucine/metabolism , Leucine/pharmacology , Liver/metabolism , Mammals/genetics , Mammals/metabolism , Pregnancy , Protein Biosynthesis , RNA/metabolism , Sirolimus/pharmacology , Swine , TOR Serine-Threonine Kinases/metabolism
8.
Curr Opin Chem Biol ; 68: 102151, 2022 06.
Article in English | MEDLINE | ID: mdl-35483127

ABSTRACT

Electrogenetics, the combination of electronics and genetics, is an emerging field of mammalian synthetic biology in which electrostimulation is used to remotely program user-designed genetic elements within designer cells to generate desired outputs. Here, we describe recent advances in electro-induced therapeutic gene expression and therapeutic protein secretion in engineered mammalian cells. We also review available tools and strategies to engineer electro-sensitive therapeutic designer cells that are able to sense electrical pulses and produce appropriate clinically relevant outputs in response. We highlight current limitations facing mammalian electrogenetics and suggest potential future directions for research.


Subject(s)
Cell Engineering , Cells , Electric Stimulation , Genetics , Mammals , Synthetic Biology , Animals , Cell Engineering/methods , Cell Physiological Phenomena/genetics , Cells/metabolism , Electric Stimulation/methods , Electric Stimulation Therapy , Electronics , Gene Expression Regulation , Mammals/genetics , Protein Biosynthesis , Synthetic Biology/methods , Telemetry
9.
Oxid Med Cell Longev ; 2022: 6316611, 2022.
Article in English | MEDLINE | ID: mdl-35313639

ABSTRACT

Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of 71.89 ± 0.92 kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (P > 0.05). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (P < 0.01). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (P < 0.01), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (P < 0.05). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (P < 0.05), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (P < 0.05). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (P < 0.05). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (P < 0.05). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.


Subject(s)
Amino Acids , Lonicera , Amino Acids/metabolism , Animal Feed/analysis , Animals , Chlorogenic Acid/pharmacology , Dietary Supplements , Lonicera/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Biosynthesis , Swine
10.
Methods Mol Biol ; 2433: 51-64, 2022.
Article in English | MEDLINE | ID: mdl-34985736

ABSTRACT

Cell-free protein synthesis (CFPS) is a powerful platform for synthetic biology, allowing for the controlled expression of proteins without reliance on living cells. However, the process of producing the cell extract, a key component of cell-free reactions, can be a bottleneck for new users to adopt CFPS as it requires technical knowledge and significant researcher oversight. Here, we provide a detailed method for implementing a simplified cell extract preparation workflow using CFAI media. We also provide a detailed protocol for the alternative, 2x YPTG media-based preparation process, as it represents a useful benchmark within the cell-free community.


Subject(s)
Escherichia coli , Protein Biosynthesis , Cell-Free System/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Synthetic Biology/methods
11.
Plant Physiol ; 188(1): 111-133, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34618082

ABSTRACT

Maize (Zea mays) seeds are a good source of protein, despite being deficient in several essential amino acids. However, eliminating the highly abundant but poorly balanced seed storage proteins has revealed that the regulation of seed amino acids is complex and does not rely on only a handful of proteins. In this study, we used two complementary omics-based approaches to shed light on the genes and biological processes that underlie the regulation of seed amino acid composition. We first conducted a genome-wide association study to identify candidate genes involved in the natural variation of seed protein-bound amino acids. We then used weighted gene correlation network analysis to associate protein expression with seed amino acid composition dynamics during kernel development and maturation. We found that almost half of the proteome was significantly reduced during kernel development and maturation, including several translational machinery components such as ribosomal proteins, which strongly suggests translational reprogramming. The reduction was significantly associated with a decrease in several amino acids, including lysine and methionine, pointing to their role in shaping the seed amino acid composition. When we compared the candidate gene lists generated from both approaches, we found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a tight interconnected cluster dominated by translational machinery genes, especially ribosomal proteins, further supporting the role of translation dynamics in shaping seed amino acid composition. These findings strongly suggest that seed biofortification strategies that target the translation machinery dynamics should be considered and explored further.


Subject(s)
Amino Acids/metabolism , Protein Biosynthesis/drug effects , Seed Storage Proteins/genetics , Seed Storage Proteins/metabolism , Seeds/metabolism , Zea mays/genetics , Zea mays/metabolism , Amino Acids/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Genomics , Genotype , Metabolomics , Phenotype , Seeds/genetics
12.
Nat Commun ; 12(1): 7039, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857769

ABSTRACT

Site-specific incorporation of unnatural amino acids (UAAs) with similar incorporation efficiency to that of natural amino acids (NAAs) and low background activity is extremely valuable for efficient synthesis of proteins with diverse new chemical functions and design of various synthetic auxotrophs. However, such efficient translation systems remain largely unknown in the literature. Here, we describe engineered chimeric phenylalanine systems that dramatically increase the yield of proteins bearing UAAs, through systematic engineering of the aminoacyl-tRNA synthetase and its respective cognate tRNA. These engineered synthetase/tRNA pairs allow single-site and multi-site incorporation of UAAs with efficiencies similar to those of NAAs and high fidelity. In addition, using the evolved chimeric phenylalanine system, we construct a series of E. coli strains whose growth is strictly dependent on exogenously supplied of UAAs. We further show that synthetic auxotrophic cells can grow robustly in living mice when UAAs are supplemented.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Directed Molecular Evolution/methods , Escherichia coli/genetics , Phenylalanine/metabolism , Protein Biosynthesis , RNA, Transfer/genetics , Amino Acids/metabolism , Amino Acids/pharmacology , Amino Acyl-tRNA Synthetases/metabolism , Animals , Base Pairing , Biomimetic Materials/metabolism , Biomimetic Materials/pharmacology , Cell Engineering , Escherichia coli/metabolism , Gene Expression , Genes, Reporter , Germ-Free Life , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Nucleic Acid Conformation , Phenylalanine/pharmacology , Plasmids/chemistry , Plasmids/metabolism , RNA, Transfer/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Int J Mol Sci ; 22(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34768885

ABSTRACT

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Subject(s)
Alkyl and Aryl Transferases/genetics , RNA, Transfer/metabolism , Selenoproteins/metabolism , Alkyl and Aryl Transferases/metabolism , Animals , Cell Line , Cysteine/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Neurons/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Protein Biosynthesis/genetics , RNA, Transfer/genetics , Ribosomes/metabolism , Selenium/metabolism , Selenocysteine/genetics , Selenoprotein P/genetics , Selenoproteins/genetics
14.
Nutrients ; 13(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34836236

ABSTRACT

Protein supplementation is a commonly employed strategy to enhance resistance training adaptations. However, little research to date has examined if peanut protein supplementation is effective in this regard. Thus, we sought to determine if peanut protein supplementation (PP; 75 total g/d of powder providing 30 g/d protein, >9.2 g/d essential amino acids, ~315 kcal/d) affected resistance training adaptations in college-aged adults. Forty-seven college-aged adults (n = 34 females, n = 13 males) with minimal prior training experience were randomly assigned to a PP group (n = 18 females, n = 5 males) or a non-supplement group (CTL; n = 16 females, n = 8 males) (ClinicalTrials.gov trial registration NCT04707963; registered 13 January 2021). Body composition and strength variables were obtained prior to the intervention (PRE). Participants then completed 10 weeks of full-body resistance training (twice weekly) and PP participants consumed their supplement daily. POST measures were obtained 72 h following the last training bout and were identical to PRE testing measures. Muscle biopsies were also obtained at PRE, 24 h following the first exercise bout, and at POST. The first two biopsy time points were used to determine myofibrillar protein synthesis (MyoPS) rates in response to a naïve training bout with or without PP, and the PRE and POST biopsies were used to determine muscle fiber adaptations in females only. Dependent variables were analyzed in males and females separately using two-way (supplement × time) repeated measures ANOVAs, unless otherwise stated. The 24-h integrated MyoPS response to the first naïve training bout was similar between PP and CTL participants (dependent samples t-test p = 0.759 for females, p = 0.912 for males). For males, the only significant supplement × time interactions were for DXA-derived fat mass (interaction p = 0.034) and knee extensor peak torque (interaction p = 0.010); these variables significantly increased in the CTL group (p < 0.05), but not the PP group. For females, no significant supplement × time interactions existed, although interactions for whole body lean tissue mass (p = 0.088) and vastus lateralis thickness (p = 0.099) approached significance and magnitude increases in these characteristics favored the PP versus CTL group. In summary, this is the second study to determine the effects of PP supplementation on resistance training adaptations. While PP supplementation did not significantly enhance training adaptations, the aforementioned trends in females, the limited n-size in males, and this being the second PP supplementation study warrant more research to determine if different PP dosing strategies are more effective than the current approach.


Subject(s)
Adaptation, Physiological , Arachis/chemistry , Dietary Supplements , Plant Proteins/pharmacology , Resistance Training , Adaptation, Physiological/drug effects , Amino Acids/analysis , Body Composition , Eating , Female , Humans , Male , Muscle Strength/drug effects , Muscle, Skeletal/diagnostic imaging , Myofibrils/metabolism , Protein Biosynthesis , Thigh/diagnostic imaging , Young Adult
15.
J Bacteriol ; 204(1): JB0035221, 2021 01 01.
Article in English | MEDLINE | ID: mdl-34662240

ABSTRACT

Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Ribosome profiling has been used to infer the existence of small proteins by detecting the translation of the corresponding open reading frames (ORFs). Detection of translated short ORFs by ribosome profiling can be improved by treating cells with drugs that stall ribosomes at specific codons. Here, we combine the analysis of ribosome profiling data for Escherichia coli cells treated with antibiotics that stall ribosomes at either start or stop codons. Thus, we identify ribosome-occupied start and stop codons with high sensitivity for ∼400 novel putative ORFs. The newly discovered ORFs are mostly short, with 365 encoding proteins of <51 amino acids. We validate translation of several selected short ORFs, and show that many likely encode unstable proteins. Moreover, we present evidence that most of the newly identified short ORFs are not under purifying selection, suggesting they do not impact cell fitness, although a small subset have the hallmarks of functional ORFs. IMPORTANCE Small proteins of <51 amino acids are abundant across all domains of life but are often overlooked because their small size makes them difficult to predict computationally, and they are refractory to standard proteomic approaches. Recent studies have discovered small proteins by mapping the location of translating ribosomes on RNA using a technique known as ribosome profiling. Discovery of translated sORFs using ribosome profiling can be improved by treating cells with drugs that trap initiating ribosomes. Here, we show that combining these data with equivalent data for cells treated with a drug that stalls terminating ribosomes facilitates the discovery of small proteins. We use this approach to discover 365 putative genes that encode small proteins in Escherichia coli.


Subject(s)
Proteomics , Ribosome Profiling , Open Reading Frames , Codon, Terminator , Escherichia coli/genetics , Amino Acids/genetics , Protein Biosynthesis
16.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34517941

ABSTRACT

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Subject(s)
Drosophila Proteins/metabolism , Motor Activity/genetics , Motor Activity/physiology , Polyamines/metabolism , RNA-Binding Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Line , Down-Regulation/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Muscle, Skeletal/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Protein Biosynthesis , Putrescine/pharmacology , RNA Interference , RNA-Binding Proteins/genetics , Spermidine/pharmacology
17.
Nat Commun ; 12(1): 5706, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588441

ABSTRACT

Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.


Subject(s)
Anticodon/metabolism , Codon/metabolism , Directed Molecular Evolution , Escherichia coli/genetics , RNA, Transfer/genetics , Amino Acids/genetics , Amino Acyl-tRNA Synthetases/metabolism , Cloning, Molecular , Escherichia coli/enzymology , Escherichia coli Proteins/biosynthesis , Protein Biosynthesis , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Transfer/metabolism
18.
J Neurosci ; 41(42): 8801-8814, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34475199

ABSTRACT

Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder characterized by intellectual disabilities, motor and balance deficits, impaired communication, and a happy, excitable demeanor with frequent laughter. We sought to elucidate a preclinical outcome measure in male and female rats that addressed communication abnormalities of AS and other neurodevelopmental disorders in which communication is atypical and/or lack of speech is a core feature. We discovered, and herein report for the first time, excessive laughter-like 50 kHz ultrasonic emissions in the Ube3amat-/pat+ rat model of AS, which suggests an excitable, playful demeanor and elevated positive affect, similar to the demeanor of individuals with AS. Also in line with the AS phenotype, Ube3amat-/pat+ rats demonstrated aberrant social interactions with a novel partner, distinctive gait abnormalities, impaired cognition, an underlying LTP deficit, and profound reductions in brain volume. These unique, robust phenotypes provide advantages compared with currently available mouse models and will be highly valuable as outcome measures in the evaluation of therapies for AS.SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a severe neurogenetic disorder for which there is no cure, despite decades of research using mouse models. This study used a recently developed rat model of AS to delineate disease-relevant outcome measures to facilitate therapeutic development. We found the rat to be a strong model of AS, offering several advantages over mouse models by exhibiting numerous AS-relevant phenotypes, including overabundant laughter-like vocalizations, reduced hippocampal LTP, and volumetric anomalies across the brain. These findings are unconfounded by detrimental motor abilities and background strain, issues plaguing mouse models. This rat model represents an important advancement in the field of AS, and the outcome metrics reported herein will be central to the therapeutic pipeline.


Subject(s)
Angelman Syndrome/genetics , Disease Models, Animal , Laughter/physiology , Microcephaly/genetics , Ubiquitin-Protein Ligases/genetics , Vocalization, Animal/physiology , Angelman Syndrome/metabolism , Angelman Syndrome/psychology , Animals , Brain/metabolism , Female , Gene Deletion , Laughter/psychology , Male , Microcephaly/metabolism , Microcephaly/psychology , Organ Culture Techniques , Protein Biosynthesis/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Reflex, Startle/physiology , Social Behavior , Ubiquitin-Protein Ligases/deficiency
19.
Nutrients ; 13(8)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34444950

ABSTRACT

The purpose of this research was to investigate the prophylactic effects of glutamine on muscle protein synthesis and degradation in rats with ethanol-induced liver injury. For the first 2 weeks, Wistar rats were divided into two groups and fed a control (n = 16) or glutamine-containing diet (n = 24). For the following 6 weeks, rats fed the control diet were further divided into two groups (n = 8 per group) according to whether their diet contained no ethanol (CC) or did contain ethanol (CE). Rats fed the glutamine-containing diet were also further divided into three groups (n = 8 per group), including a GG group (glutamine-containing diet without ethanol), GE group (control diet with ethanol), and GEG group (glutamine-containing diet with ethanol). After 6 weeks, results showed that hepatic fatty change, inflammation, altered liver function, and hyperammonemia had occurred in the CE group, but these were attenuated in the GE and GEG groups. Elevated intestinal permeability and a higher plasma endotoxin level were observed in the CE group, but both were lower in the GE and GEG groups. The level of a protein synthesis marker (p70S6K) was reduced in the CE group but was higher in both the GE and GEG groups. In conclusion, glutamine supplementation might elevate muscle protein synthesis by improving intestinal health and ameliorating liver damage in rats with chronic ethanol intake.


Subject(s)
Glutamine/administration & dosage , Liver Diseases, Alcoholic/prevention & control , Muscle Proteins/metabolism , Protein Biosynthesis/drug effects , Proteolysis/drug effects , Animals , Dietary Supplements , Disease Models, Animal , Ethanol , Inflammation , Intestinal Mucosa/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/etiology , Rats , Rats, Wistar
20.
Nutrients ; 13(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34371831

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) is a key entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus known to induce Coronavirus disease 2019 (COVID-19). We have recently outlined a concept to reduce ACE2 expression by the administration of glycyrrhizin, a component of Glycyrrhiza glabra extract, via its inhibitory activity on 11beta hydroxysteroid dehydrogenase type 2 (11betaHSD2) and resulting activation of mineralocorticoid receptor (MR). We hypothesized that in organs such as the ileum, which co-express 11betaHSD2, MR and ACE2, the expression of ACE2 would be suppressed. We studied organ tissues from an experiment originally designed to address the effects of Glycyrrhiza glabra extract on stress response. Male Sprague Dawley rats were left undisturbed or exposed to chronic mild stress for five weeks. For the last two weeks, animals continued with a placebo diet or received a diet containing extract of Glycyrrhiza glabra root at a dose of 150 mg/kg of body weight/day. Quantitative PCR measurements showed a significant decrease in gene expression of ACE2 in the small intestine of rats fed with diet containing Glycyrrhiza glabra extract. This effect was independent of the stress condition and failed to be observed in non-target tissues, namely the heart and the brain cortex. In the small intestine we also confirmed the reduction of ACE2 at the protein level. Present findings provide evidence to support the hypothesis that Glycyrrhiza glabra extract may reduce an entry point of SARS-CoV-2. Whether this phenomenon, when confirmed in additional studies, is linked to the susceptibility of cells to the virus requires further studies.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , COVID-19 Drug Treatment , Dietary Supplements , Glycyrrhiza , Plant Extracts/therapeutic use , Protein Biosynthesis/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Glycyrrhizic Acid/administration & dosage , Glycyrrhizic Acid/therapeutic use , Male , Plant Extracts/administration & dosage , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL